Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(31): eadg8163, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531424

RESUMEN

The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.


Asunto(s)
Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Retina , Células Fotorreceptoras Retinianas Bastones , Epitelio Pigmentado de la Retina , Primates
2.
Mol Ther Methods Clin Dev ; 24: 306-316, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229004

RESUMEN

Positive clinical outcomes in adeno-associated virus (AAV)-mediated retinal gene therapy have often been attributed to the low immunogenicity of AAVs and immune privilege of the eye. However, several recent studies have shown potential for inflammatory responses. The current understanding of the factors contributing to inflammation, such as the pre-existence of serum antibodies against AAVs and their contribution to increases in antibody levels post-injection, is incomplete. The parameters that regulate the generation of new antibodies in response to the AAV capsid or transgene after intraocular injections are also insufficiently described. This study is a retrospective analysis of the pre-existing serum antibodies in correlation with changes in antibody levels after intraocular injections of AAV in non-human primates (NHPs) of the species Macaca fascicularis. In NHP serums, we analyzed the binding antibody (BAB) levels and a subset of these called neutralizing antibodies (NABs) that impede AAV transduction. We observed significantly higher pre-existing serum BABs against AAV8 compared with other serotypes and a dose-dependent increase in BABs and NABs in the serums collected post-injection, irrespective of the serotype or the mode of injection. Lastly, we were able to demonstrate a correlation between the serum BAB levels with clinical grading of inflammation and levels of transgene expression.

3.
Commun Biol ; 5(1): 89, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075261

RESUMEN

Human cone phototropism is a key mechanism underlying the Stiles-Crawford effect, a psychophysiological phenomenon according to which photoreceptor outer/inner segments are aligned along with the direction of incoming light. However, such photomechanical movements of photoreceptors remain elusive in mammals. We first show here that primate cone photoreceptors have a planar polarity organized radially around the optical center of the eye. This planar polarity, based on the structure of the cilium and calyceal processes, is highly reminiscent of the planar polarity of the hair cells and their kinocilium and stereocilia. Secondly, we observe under super-high resolution expansion microscopy the cytoskeleton and Usher proteins architecture in the photoreceptors, which appears to establish a mechanical continuity between the outer and inner segments. Taken together, these results suggest a comprehensive cellular mechanism consistent with an active phototropism of cones toward the optical center of the eye, and thus with the Stiles-Crawford effect.


Asunto(s)
Polaridad Celular/fisiología , Luz , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Animales , Fenómenos Biomecánicos , Citoesqueleto , Macaca fascicularis , Reproducibilidad de los Resultados , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/fisiología
4.
PLoS One ; 15(4): e0230713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32267845

RESUMEN

PURPOSE: To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. METHODS: Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. RESULTS: The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. CONCLUSIONS: We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials.


Asunto(s)
Microtecnología/instrumentación , Prótesis e Implantes , Retina/cirugía , Tecnología Inalámbrica , Animales , Gatos , Macaca fascicularis , Seguridad
5.
Nat Biomed Eng ; 4(2): 172-180, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792423

RESUMEN

Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.


Asunto(s)
Degeneración Macular/rehabilitación , Movimientos Sacádicos , Visión Ocular/fisiología , Percepción Visual , Prótesis Visuales , Animales , Modelos Animales de Enfermedad , Medidas del Movimiento Ocular , Macaca fascicularis , Degeneración Macular/fisiopatología , Masculino , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...